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ABSTRACT

Aim To offer a test of expert knowledge about rarity of twenty Amazon forest

bird species following an approach that equates rarity with low site occupancy

and formally accounts for imperfect species detection. We define ten pairs of

closely related species, each pair with one hypothetically common and one

hypothetically rare species. Our null hypothesis is that members of each pair

have similar occupancy, with hypothesized differences due to detection errors

alone.

Location A 1000-ha plot of primary rainforest in the central Brazilian Amazon.

Methods We visited each of 55 sampling sites multiple times per season for

three field seasons and estimated the probability of site occupancy by each spe-

cies following a maximum likelihood state-space approach that also estimates

the probability that a species is present yet undetected at a site. To maximize

detection and account for its variation, we employed three different sampling

techniques while systematically training and testing observer’s ability to

recognize species.

Results Occupancy estimates agree with expert predictions in all but two

species pairs and show no evidence of clear temporal variation in occupancy

between sampling seasons. Detection probability had a positive relation with

observer ability, a strong relation to time of day across species, and a strong

relation with the use of playback for some species. Detection with point counts

and with autonomous recorders varied between species pairs.

Main conclusions We reject the null hypothesis of equal occupancy within

pairs, concluding that expert knowledge on species rarity is useful and worth

eliciting. Our results replace qualitative ratings of rarity with statistical esti-

mates of occupancy, establishing a reliable baseline for future comparisons.

Besides illustrating the relevance of expert knowledge, this application to

Amazonian birds illustrates a flexible approach that can be used for testing

knowledge about rarity for a variety of species groups and spatial scales.
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INTRODUCTION

Anyone faced with a difficult decision should benefit from

additional information; however, it is often the lack of infor-

mation that makes the decision difficult in the first place.

One way out of this dilemma is resorting to expert knowl-

edge – ‘substantive information on a particular topic, that is

not widely known by others’ (Martin et al., 2012). Such

knowledge may fill an information gap (Keith et al., 2004;

Runge et al., 2011), but because experts can easily make

mistakes (Tversky & Kahneman, 1974; Ludwig & Mangel,

2001), their knowledge should be subject to testing and
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verification (Burgman et al., 2011). In the context of biologi-

cal diversity, species rarity is a good example of the sort of

information that is frequently provided by experts (e.g. Stotz

et al., 1996; IUCN, 2001; Franklin et al., 2009; ACCDC,

2012). Rare species are particularly prone to extinction

(Lande, 1988; Lawton, 1995; Stephens & Sutherland, 1999;

Saether et al., 2010), and thus, many management decisions

require information on which species are common and

which species are rare. But rare species are also hard to find

by definition, and the accurate quantification of their rarity,

however measured, is a challenging and expensive task. As a

result, many assessments of rarity constitute highly uncertain

compilations of the opinion of a few professionals and are

rarely validated against empirical data. This article offers a

test of expert knowledge about rarity of tropical forest birds,

discussing the usefulness of this knowledge and the reasons

why experts may or may not have been correct in our

particular case.

There are multiple definitions of rarity (Rabinowitz et al.,

1986; Hartley & Kunin, 2003), which can be broadly orga-

nized in two groups (Gaston, 1994, chapter 1): those which

treat rarity as low population size and those which treat it as

small geographic range, or area of occupancy. In this study,

we define rarity as low occupancy, that is low probability

that a site is occupied by a species. Although no definition is

perfect, we chose an occupancy-based rather than abun-

dance-based definition because this suits the large spatial

extent and the field sampling constraints of our study.

Whether one species is rare or not depends on an arbitrarily

low number of individuals or number of occupied sites

below which we declare rarity; when working with two or

more species, however, one species can always be more rare

than the other, and rarity becomes a relative concept. We

treat rarity in its relative form, and test predictions about

which species are rare and which are common in pairwise

comparisons of closely related species.

The main danger in classifying species as rare or common

is to confound rarity with elusiveness. In the absence of mis-

identification (Miller et al., 2011), detection is a sure sign of

presence, but nondetection can result from real absence or

from missing a species that is actually there. A large number

of studies show how failure to account for imperfect detec-

tion may bias down estimates of occupancy or population

size (e.g. Moilanen, 2002; Gu & Swihart, 2004; K�ery & Royle,

2008), sometimes in extreme ways (Simons et al., 2009; K�ery

et al., 2010). We address this problem with a well-established

occupancy-sampling design (MacKenzie et al., 2002; Tyre

et al., 2003) that includes replicate visits to each of a set of

sites within a relatively short period. Essentially, replicate

visits take place within a short enough time that one can

consider the site to be closed (i.e. either occupied or not for

the entire set of replicates). The proportion of detections

over the total number of visits to sites with one or more

detections reveals information about detection probability,

which in turn improves inference about the number of sites

where the species may be present yet not detected. This leads

to estimates of real occupancy, unbiased by imperfect detec-

tion, which we compare to an a priori hypothesis of which

species are rare and which are common.

Our source of expert knowledge was the ornithological

monograph by Cohn-Haft et al. (1997) and subsequent con-

sultation with its authors. Based on more than 10 years of

opportunistic observations in three large areas of forest and

one river margin, the monograph updates a species list for

one of the forest areas (Stotz & Bierregaard, 1989) and offers

the most complete description of the avifauna around the

city of Manaus available to this date. The three authors,

M. Cohn-Haft, A. Whittaker and P. Stouffer, are all profes-

sional ornithologists who jointly had 25 years of experience

in the region when the monograph was published and con-

tinue working in the region today. Cohn-Haft et al. (1997)

offered qualitative ratings of species rarity and commonness-

our interest in testing expert knowledge stems directly from

their challenge that ‘ratings represent dimensionless hypothe-

ses of density that can (and should) be tested by quantitative

census techniques’. To test the ratings, we focus on ten pair-

wise comparisons of closely related species in an effort to

separate interspecific occupancy differences from other bio-

logical differences that might confer rarity. In each pair, one

species is hypothetically common and the other is hypotheti-

cally rare. Our null hypothesis is that all rating differences

are false: there is no difference in occupancy between species

of the same pair, and any impression of such difference is

due to sampling artefact.

While Cohn-Haft et al. (1997) made pioneering observa-

tions of an avifauna that was still poorly identified, we had

the opportunity to conduct a designed sample of a target

study area and to employ a simple but multifaceted combi-

nation of observation techniques that maximizes the detec-

tion of focal species. We also trained observers to identify

bird vocalizations, tested their ability to identify vocalizations

correctly, and modelled species detection as a function of

observer performance metrics. We did not model occupancy

as a function of habitat covariates, as our purpose was to

compare species and not to ask about reasons that may

underlie within-species variation in rarity or occupancy. The

focus on simple comparisons of occupancy and the flexibility

with sampling techniques afforded a relatively large spatial

and temporal coverage. We hope that our focused approach,

aligned with the breadth and impact of Cohn-Haft et al.’s

(1997) monograph, offers an informative test of expert

knowledge about rarity and commonness of central Amazon

birds, and a useful illustration of the assessment of expert

knowledge in an ecological setting.

METHODS

Study area

Field sampling took place on the trail grid of ‘camp 41’ at

the Biological Dynamics of Forest Fragments Project

(BDFFP), 70 km north of Manaus, Brazil. The grid spans
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1000 ha of upland primary tropical moist forest adjacent to

km 41 of the ZF-3 road, off the interstate highway BR-174

(Fig. 1a). Forest canopy is 35–40 m tall with emergent trees

as high as 45 m; the sparse understorey vegetation, domi-

nated by stemless palms contrasts with a dense tree cover

(Rankin-de-M�erona et al., 1992). Annual rainfall ranging

from 1900 to 3500 mm falls mostly between January and

May, with a dry season from June through December when

it usually rains < 200 mm per month (Laurance, 2001). The

sampling grid overlaps four microbasins that drain into the

Urubu River and contains two ponds, both surrounded nar-

rowly by relatively low forest. Strong winds in September

2007 created two large tree-fall gaps of more than one hect-

are each. We distributed 55 sampling points at regular 400-

m intervals along 10 parallel north–south trails, themselves

separated from each other by 400 m, except for the two cen-

tral trails separated by 600 m on either side of a particularly

steep valley (Fig. 1b).

Species and ratings

We selected 10 species pairs, each formed by one hypotheti-

cally common and one hypothetically rare species, henceforth

called ‘common’ and ‘rare’, respectively (Table 1). A priori

ratings of rarity followed Cohn-Haft et al.’s (1997) listing of

species under common (c), uncommon (u) and rare (r) cate-

gories. Given the broad qualitative nature of the categories

and our relative approach to rarity, we formed pairs of com-

mon and rare species that had ratings of (c,r), (c,u) and (u,

r). In two of the pairs (foliage-gleaners and antthrushes), the

published ratings were (c,c), but we revised them upon

consultation with the experts: the rare foliage-gleaner is

considered common in secondary forests but rare in the old-

growth habitat that dominates the region; the rating of the

antthrushes was revised based on post-1997 observations

suggesting that Formicarius analis is rarer than F. colma.

Eight of 10 pairs were formed by congeneric species; the

remaining two consisted of ecologically and morphologically

similar species from the same family. Relatedness was

intended to reduce phylogenetic variability within each pair,

enabling us to isolate and explore differences in rarity on a

common evolutionary background. All species are resident

throughout the year and have vocalizations that are relatively

easy to identify. In an attempt to attain independence

between points, we avoided species with very large territories

and/or loud calls, such as tinamous, hawks, toucans, parrots,

macaws and cotingas.

Field sampling

We sampled during three field ‘seasons’ in December 2007,

May 2008 and November 2008. We call these D-07, R-08

and D-08 because they fall respectively in dry, rainy and dry

periods. Seasons lasted 11, 13 and 12 days, respectively, dur-

ing which we sampled each of the 55 points from a mini-

mum of nine replicate visits in D-07, to a maximum of 27

in D-08. Intervals between visits were such that we assume

closure within, but not between seasons. Data collection fol-

lowed three techniques: point counts, playback and autono-

mous recording. D-08 received more visits because we

started employing autonomous recording then and recorders

make it easier to replicate visits. Sampling started 10 min

before sunrise and went on for up to 4 h. We always regis-

tered the time at which we visited each point and used that

information as a covariate of detection probability in the

analysis. A point count consisted of a 3-min visit to a sam-

pling point where an observer registered the names of all

species seen or heard. To cover the whole grid shortly, we

performed simultaneous point counts with ten observers for

seven consecutive days in each season. Each day observers

were randomly assigned to the 10 north–south trails

(Fig. 1b), starting at the southern end of each trail, moving

north, and then returning southbound on an adjacent trail.

Playback sampling was conducted at the same points for up

to five consecutive days, always at the end of each season

after all point counts were performed. One observer (MCC)

broadcast vocalizations of focal species to elicit behavioural

responses (vocalization or approach) that would permit

detection of the species’ presence at a point. We only applied

playback to trogons, puffbirds, woodcreepers, antshrikes, ant-

thrushes and wrens – groups that, in our experience, respond

particularly well to this technique. Playback sampling took
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Figure 1 Location of sampling grid within study area in

northern South America. Top panel (a) shows the BDFFP east

of highway BR-174 with unpaved roads (dashed line) and

streams (grey lines); dark grey is primary forest and light grey is

pasture or second growth. The sampling grid for this study (b)

spans an area of 928 ha near km 41 of the ZF-3 road; it

includes 55 sampling points connected by trails accessible from

‘camp 41’.
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27 minutes per point: starting with 3 min of silence,

followed by 1 min of playback and 2 min of listening per

species. Instead of playing songs of all twelve playback spe-

cies on every point, we randomly selected four pairs per

point and played the voices of selected species in a random

sequence.

When sampling with autonomous recorders, we placed

portable autonomous recording devices (PARD) at selected

points to record nonstop and unassisted for 40 h, or two

consecutive mornings. PARDs were assembled at the BDFFP

by CN and MCC following a design by Kurt Fristrup; each

device consisted of an mp3 recorder, two surveillance micro-

phones with built-in amplification, a power supply and a

waterproof case. Microphones were mounted in the neck of

a laboratory funnel, which provided protection and addi-

tional amplification (Fristrup & Clark, 2009). Ten PARDs

were set on the sampling points of two adjacent north–south

trails and subsequently moved to the next set of two trails,

until covering the whole grid. Each morning’s recording was

split into five 5-min cuts taken 15 min prior to sunrise and

15, 45, 75 and 105 min after. Cuts were processed in the

laboratory by MCC, producing records of detection and

nondetection of all focal species in each cut.

Because different observers have different abilities to hear

and identify bird vocalizations, point counts by ten different

people result in heterogeneous data quality. We addressed

this problem with a computer-based system for assisting in

memorizing bird sounds based on SUPERMEMO, a spaced-

repetition software (Wozniak, 2006; Ferraz et al., 2008;

Greene, 2008). The system helped to balance skills across

observers and produced a quantitative score of observer abil-

ity. Our SuperMemo study collection includes 863 mp3 tracks

of 337 species, based on field recordings kindly shared by

Philip C. Stouffer and the Ornithological Collection of the

Instituto Nacional de Pesquisas da Amazônia (INPA). Super-

Memo presents bird vocalizations to the user in the form of

questions, which he answers with a species name, as if using

a collection of electronic flash cards. The system tracks user

performance and runs an algorithm that adjusts the timing

of future questions to enhance memorization of the most

frequently missed sounds. At the beginning of each season,

we used SuperMemo to obtain a memorization score for each

observer. The score measures the proportion of focal species’

vocalizations that the observer identifies correctly in a test

and was included as a covariate of detection probability in

occupancy models.

Analysis

We used point count, playback and recording data jointly, to

estimate site occupancy by each species. Operationally, a

‘site’ is an area with a radius of 200 m centred on a

Table 1 Species pairs, with number of sampling seasons per pair and model selection results

Pair Species* k† Model‡ wi
§

Trogons Trogon viridis

Trogon rufus

3 w (t 9 s) , p (t + s + h 9 s + r + Pb 9 s + Sc + R) 0.500

Puffbirds Bucco tamatia

Bucco capensis

2 w (t + s) , p (t + h + Pb) 0.197

Jacamars Galbula dea

Galbula leucogastra

2 w (t 9 s) , p (t + h + r + Sc + R) 0.313

Woodcreepers Dendrocolaptes certhia

Dendrocolaptes picumnus

3 w (t + s) , p (t + s + h 9 s + r + Pb 9 s + Sc + R) 0.508

Foliage-gleaners Automolus infuscatus

Automolus ochrolaemus

2 w (t + s) , p (t + s + h 9 s) 0.424

Antshrikes Cymbilaimus lineatus

Frederickena viridis

2 w (t + s) , p (t + s + h + Pb) 0.288

Antwrens Myrmotherula brachyura

Myrmotherula axillaris

3 w (t + s) , p (t + s + h + Sc + R) 0.292

Antthrushes Formicarius colma

Formicarius analis

3 w (t + s) , p (t + s + h + Pb + Sc + R) 0.471

Wrens Microcerculus bambla

Cyphorhinus arada

2 w (t + s) , p (t + s + h + Pb) 0.217

Greenlets Hylophilus muscicapinus

Hylophilus thoracicus

2 w (t + s) , p (t + s + h + Sc + R) 0.286

*The first species of each pair is hypothetically common and the second is hypothetically rare.

†Number of sampling seasons. When k = 2 the rainy season of 2008 was dropped due to lack of data.

‡The top model (DAIC = 0) for the respective species pair with model name listing covariates for occupancy (w) and detection (p) in parenthe-

ses. Covariate notation stands for sampling season (t), species (s), time (h), previous-night rain showers (r), playback (Pb), observer score (Sc)

and autonomous recording (R). Simple additive effects are denoted by ‘+’; ‘9s’ indicates an interaction between the covariate before the ‘9’ and

species.

§AIC weight of the top model within the a priori set of 22 models.
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sampling point. We believe this radius is the maximum dis-

tance at which an observer or a recorder can pick up a

sound from the loudest of our study species. Site occupancy

estimation formally accounted for imperfect detection fol-

lowing the standard maximum likelihood hierarchical

approach introduced by MacKenzie et al. (2002) and

expanded by MacKenzie et al. (2005). Just as in the standard

approach, our models contain a sampling level describing

the probability of detection conditioned on occupancy (p),

and an underlying biological level describing the probability

w that a site is occupied. Both p and w are allowed to vary

between seasons, yet for simplicity and ease of numerical

estimation, we model temporal dynamics implicitly (Mac-

Kenzie et al., 2006, p. 186), without quantifying the dynamic

processes of local extinction and colonization, which are not

central to our goals. Also adhering to standard, we incorpo-

rate the flexibility of linear models by representing both p

and w as logistic functions of sampling, environmental and

temporal covariates. The one nonstandard aspect of our

analysis is the testing of rarity hypotheses by modelling one

pair of species, rather than one single species, at a time. In

doing so, we treat species identity as a binary covariate esti-

mating the ‘effect’ (a1) of species identity on w, while also

considering the possibility of a species ‘effect’ (a1) on p. Note

that the same covariate, species (s), can have different effects

on occupancy and on detection. A simple model for one pair

would be:

logit pið Þ ¼ a0 þ a1si
logit wið Þ ¼ a0 þ a1si

�
;

where ‘s’ equals 0 for the common species (i = 1) and 1 for

the rare (i = 2). One can then add effects a2, a3, … or a2,
a3, … for additional covariates of detection or occupancy,

respectively. There are several informative ways of combining

species (i = 1, 2), season (j = 1, 2, 3) and visit (k = 1, …,

27) attributes as covariates in a model; we fit the same set of

22 models defined a priori to each pair of species, each

model representing an alternative hypothetical explanation of

the data. Every model includes a1, but some exclude a1 to

examine whether species differences can be due to occupancy

alone.

Our model set is based on a core group of four alternative

detection model types (Table 2). These range from a Simple

to a fully parameterized (Full) arrangement of biological and

sampling technique covariates. Biological covariates are the

time of day (h) and a binary measure of whether there was

heavy (>10 mm) rainfall the night before sampling. Tech-

nique covariates are: a binary measure of playback (Pb; equal

to 1 when there is playback and 0 otherwise), a quantitative

score of observer ability (Sc), and a binary measure of PARD

use (R; equal to 1 for PARD samples and 0 otherwise). Addi-

tionally, we model interactions between h and species

(h 9 s) as well as between Pb and species (Pb 9 s), allowing

for species-specific detection responses to time of day and

playback. Intermediate model types differ from the Simple

type by the inclusion of interactions (Intermediate 1) and by

the inclusion of Sc and R (Intermediate 2). We combine the

four basic types with three ways of modelling seasonal (t)

and species (s) effects on detection: additive (t + s), interac-

tion (t 9 s) and season alone (t), this latter hypothesizing

equal detection between species. As Intermediate 1 does not

apply in the absence of a species effect, the combination

originates eleven detection models. The occupancy part of

the model is focused on seasonal and species effects, taking

only two alternative forms: t + s and t 9 s. The combination

of eleven scenarios for detection and two for occupancy leads

to the 22 models of our a priori set. The most parameterized

model is the full-detection model with three seasons and

interaction between species and season both on occupancy

and detection:

logitðpijkÞ ¼a0 þ a1si þ a2t
0
j þ a3t

00
j þ a4si � t0j þ a5si � t00j

þa6hk þ a7si � hk þ a8rk þ a9Pbk þ a10si � Pbk

þa11Sck þ a12Rk

logitðwijÞ ¼a0 þ a1si þ a2t0j þ a3t00j þ a4si � t0j þ a5si � t00j :

8>>><
>>>:

Covariate t0j equals 1 for D-07, �1 for R-08 and 0 for

D-08, while t00j equals 1, 0 and �1, for D-07, R-08 and D-08,

respectively. With this parameterization of seasonal effects,

a1 and a1 can be interpreted as average effects of species

across seasons, regardless of whether there are any interac-

tions in the detection or occupancy part of the model. All

the other models are simplifications of this one.

Data analysis included model selection and parameter esti-

mation, both implemented in the freely available software

PRESENCE (Hines, 2012). We chose how to model each pair’s

data based on model selection results (Table 1), but tested

the null hypothesis of equal occupancy within pairs by exam-

ining a1 estimates. Model selection followed the Akaike

information criterion (AIC), which formally expresses a com-

promise between model fit and parsimony (Burnham &

Anderson, 2004). Worse fit or higher number of parameters

result in higher AIC values. We rank models based on two

Table 2 Basic structure of detection models indicating four

alternative arrangements of the linear effects of time (h),

playback (Pb), observer score (Sc), autonomous recording (R)

and previous-night rain showers (r) on logit detection

probability; ‘9’ indicates an interaction between the covariate

before the ‘9’ and species (s). The 22 models that were fitted to

each species pair’s data are combinations of these four basic

types with different effects of sampling season and species on

occupancy and detection

Model type

Detection model covariates

h h 9 s r Pb Pb 9 s Sc R

Simple

Intermediate 1

Intermediate 2

Full
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AIC-related metrics: DAIC, the difference between a model’s

AIC and the lowest AIC value in the model set; and AIC

weight (wi), interpreted as the contribution of a given model

to explaining the data, relative to other models. The sum of

wi’s across the model set equals 1. The null hypothesis pre-

dicts that a1 should be equal to or very close to zero. Thus,

the signal of a1 estimates from a set of species pairs should

be positive or negative with equal probability (0.5), as in a

coin toss.

RESULTS

The minimum number of samples per point was nine in

D-07 and eleven both in R-08 and D-08. Jointly, the three

seasons had at least 37 visits per point. The most frequently

detected species was the buff-cheeked greenlet Hylophilus

muscicapinus (all Latin names based on Remsen et al., 2012),

with 260 detections, and the least was the buff-throated foli-

age-gleaner Automolus ochrolaemus, only heard or seen eight

times throughout the study. Lack of observations led us to

remove the only rainy period, R-08, from the analysis of six

species pairs (Table 1). Although we present results for all

ten pairs, lack of data on A. ochrolaemus precluded occu-

pancy estimation for that species (Fig. 2) and, consequently,

there is no occupancy slope parameter for foliage-gleaners

(Fig. 3).

We were able to fit all 22 models to all species pairs, and

all pairs had top-ranking models (DAIC = 0) with an AIC

weight (wi) higher than 0.19 (Table 1). Overall, additive

models of the effect of season and species on occupancy

ranked better than interaction models, which allow for

change in species effects across seasons. Interaction occu-

pancy models only ranked at the top for trogons and jaca-

mars, both with extremely high occupancy estimates for the

common species in R-08. Temporal variation of trogon

occupancy warns against any strong statement about which

species is most common; for jacamars, however, the interac-

tion between species and season does not obscure the consis-

tently higher occupancy for paradise jacamar Galbula dea

than for bronzy jacamar Galbula leucogastra (Fig. 2).

Differences within pairs of species are best summarized by

the slope parameters that measure species effects on occu-

pancy (a1, Fig. 3a) and detection (a1, Fig. 3b, Table 3). We

found no evidence of within-pair differences for puffbird

and jacamar detections, which had top models without any

effect of species on detection. There were measurable differ-

ences, however, for all remaining pairs: three of them (tro-

gons, antthrushes, and wrens) showing higher detection

probability for the rare species (positive a1) and five for the

common (negative a1). Of the nine a1 estimates, eight were

negative, that is, revealed lower occupancy for the rare than

for the common species, in agreement with expert knowl-

edge. Only antwrens defied expectations, with slightly higher

occupancy for the white-flanked antwren Myrmotherula axil-

laris than for the pygmy antwren Myrmotherula brachyura.

Nonetheless, it is highly improbable that the results would

arise from chance under a true null hypothesis: if the sign of

a1 followed a binomial distribution with probability of suc-

cess 0.5, the overall result of eight successes in nine trials

would have a probability of approximately 0.017. The proba-

bility of an equal or more extreme result (eight or nine

successes) would be lower than 0.02.

Detection probabilities were generally low but variable

across species and time (Fig. 4). One-half of the pairs that

had three seasons of data had minimum detection probabili-

ties in R-08. Every time we had to exclude one season for

lack of detections, the excluded season was R-08. Although

detection showed a strong association with season, and

apparently with seasonal rain, it showed no overwhelming

relation to shorter-term overnight rain showers. Table 3
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shows only three top models with an effect of overnight rain

(r) on detection but only one (trogons) where the effect dif-

fers from zero beyond the 95% confidence level. Time of day

(h) was the most broadly relevant covariate of detection; its

effect was significantly different from zero in eight of ten

cases and negative in all but one. With the exception of jaca-

mars, all pairs were more easily detected early rather than

late in the morning. There was a strong positive interaction

between time and species (s) for trogons and foliage-gleaners,

indicating that, for these pairs, the negative effect of time is

due to the common species. Playback (Pb) had a positive

effect on detection every time that it was used; the effect was

significantly different from zero in all but one of its

estimates. The strongly positive interaction between playback

and woodcreeper species reveals a much stronger response to

playback from the black-banded woodcreeper Dendrocolaptes

picumnus than from the barred woodcreeper Dendrocolaptes

certhia. As with playback, the effect of the observer ability

(Sc) was positive every time it was estimated; in four of six

cases, its 95% confidence interval excluded zero. Detection

with autonomous recorders (R) was significantly higher than

detection with point counts for two species pairs (Woodcree-

pers and Antthrushes) but significantly lower in two others

(Trogons and Antwrens; Table 3, last column).

DISCUSSION

We reject the null hypothesis of no difference in occupancy

between species of the same pair. Had expert knowledge

been wrong, estimates of a1 should have been positive just

about as often as negative. Instead, a1 was negative in eight

of nine cases, indicating that the hypothetically rare species

indeed occupy fewer sites than the hypothetically common

ones, and confirming that a priori expert ratings were

broadly correct. Our observations thus match predictions

about who is rare and who is common and we conclude that

expert knowledge can be useful and is worthwhile eliciting.

Could we find this match by chance? One might argue

that by looking at a relatively small area over a short period

of time, we stumbled across a scenario that matches expert

predictions yet is not sufficiently relevant to the region where

predictions apply. Clearly, the spatial scope of our sample

was smaller than the spatial scope of predictions in Cohn-

Haft et al. (1997), so there may be interesting spatial vari-

ability in occupancy that is not captured in our analysis.

Nonetheless, our sample spanned an area one order of mag-

nitude larger than classical tropical bird surveys (Karr, 1990;

Terborgh et al., 1990; Thiollay, 1994) and focused on a site

that contributed substantial information to expert predic-

tions. We also find remarkably little evidence of variability in

occupancy through time: on the one hand, our estimates

support a categorization conceived more than 10 years

before our fieldwork, and on the other, we found almost no

support for season-species interaction in occupancy, suggest-

ing that within-pair differences have kept the same sign

throughout the 12-month span of our fieldwork.

Our confidence that the observed match says something

useful about expert knowledge is further supported by the

natural history of the only mismatching pair of species: the

antwrens. In this pair, the hypothetically rare M. axillaris

turned out to be the most common species of the pair.

Although we cannot rule out the possibility of a true mis-

match, we believe the observer’s ability to recognize vocaliza-

tions offers a plausible explanation for this result. While

M. axillaris frequently joins understorey mixed-species flocks,

where it can be identified by sight and a variety of conspicu-

ous sounds, M. brachyura is a canopy species hardly ever

seen and easily detected only by its song (Cohn-Haft et al.,

1997). Unlike the song, calls of M. brachyura are soft and
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easily overlooked; these particular calls were not tested in

our training (for lack of good study recordings) and may

have been missed by most observers. If singing is limited to

breeding periods, we could be comparing site occupancy by

breeding M. brachyura with site occupancy by any individual

of M. axillaris. This unavailability of nonbreeding M. brachy-

ura for detection would bias its occupancy estimate down.

Thus, although statistical results would not change much

due to an additional matching pair, natural history suggests

that improved detection might result in nine of nine

matches.

The quantification of detection probability is central to

our approach, both for understanding what animals do and

for improving our efforts to find them. From the first per-

spective, while most pairs in our study confirm the intuition

that relatively rare species should be hard to detect, we find

three exceptions in trogons, antthrushes and wrens, where it

is the lower occupancy species that is easier to detect. Also

as expected, detection is higher earlier rather than late in the

morning, but again, there is an exception with late-calling

jacamars. Rain makes a difference when it pours, but we

found little evidence (excepting trogons) that overnight rain

affects detection the next morning. As for what we can do to

find birds, it is very clear that playback makes a difference:

there were strong positive effects on all but one of the tested

pairs. Practice also helps detection, particularly with jaca-

mars, antwrens, greenlets and antthrushes, for which observ-

ers with a higher score had significantly higher detection.

Finally, comparing one three-minute point count with

one five-minute autonomous recording sample, we find that

relative performance of the two techniques depends on the

pair: detection with recorders is clearly better in two cases

(woodcreepers and antthrushes) and clearly worse in another

two (trogons and antwrens). The decision of whether to use

autonomous recorders, however, should also account for the

reduced cost of taking replicate samples of a site once the

initial investment of buying the recorders is performed. One

observer can take at most five samples at peak-calling time

in one morning; the same person, however, will take one

afternoon to set up five recorders that can each collect as

many samples as desired for as many days as battery power

allows. Because humans have eyes, they can easily beat

recorders in open environments (Hutto & Stutzman, 2009);

nonetheless, in closed forests where most work is performed

Table 3 Estimated linear effects of covariates on detection probability; covariate names follow notation in Table 1 and the parameter

values correspond to the top-ranking model of each pair.

Pair

Detection covariates and associated parameter estimates

s h h 9 s* r Pb Pb 9 s Sc R

Trogons 1.042† �1.229 1.481 �0.602 2.077 �0.428 0.112 �0.897

Puffbirds � �0.886 � � 4.693 � � �
Jacamars � 0.256 � �0.670 ‡ 0.599 �0.311

Woodcreepers �0.621 �0.946 �0.291 �0.248 2.487 3.324 0.110 0.646

Foliage-gleaners �2.782 �1.513 1.686 � � �
Antshrikes �1.401 �0.240 � � 1.809 � � �
Antwrens �1.404 �0.146 � � 0.259 �0.616

Antthrushes 0.794 �0.369 � � 1.164 � 0.200 0.531

Wrens 1.188 �0.014 � � 0.882 � � �
Greenlets �2.330 �0.303 � � 0.246 �0.458

*When the interaction parameter estimate is positive, the respective effect is stronger for the hypothetically rare than for the hypothetically

common species; the opposite applies to negative estimates.

†Boldface numbers indicate estimates that are significantly different from zero at the 95% confidence level.

‡Pairs with crossed-out playback parameters had no playback during data collection and no playback effects in any of the models.
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by ear, the recorders will save time and supply a permanent

archive of observations.

Perhaps, the most defining aspect of our test of rarity pre-

dictions is that, to extend the spatial and temporal scope of

the study, we treat rarity in terms of number of occupied

sites instead of the more direct population metric of number

of individuals. This compromise is as useful as the biological

information conveyed by the occupancy estimates. While

occupancy is an attribute of a site, its precise biological inter-

pretation depends on how individual organisms move

through space. When sites are close together and organisms

move between them, it is appropriate to interpret occupancy

as habitat use (MacKenzie, 2006). A multiscale approach can

add a ‘use’ parameter that quantifies the probability that

organisms are available for detection in an occupied site

(Nichols et al., 2008; Mordecai et al., 2011); yet, multiscale

designs entail adjustments that ideally differ between species.

In its simplicity and generality, the two-tiered model that we

used is particularly useful for species comparisons, even

when variable and unknown movements of organisms heed

caution in biological interpretation. Conceivably, one might

account for the implications of individual movement by

shifting the focus to number of individuals. Yet, the estima-

tion of population size (let alone individual movement rates)

presents more difficult sampling and analytical obstacles than

the estimation of occupancy, especially in closed forest habi-

tats where low visibility limits the applicability of distance

sampling (Simons et al., 2009). So, we do encourage others

to make the same compromise that we made for comparing

species rarity (or species distributions) when detection is

imperfect, and individual-based data are not forthcoming.

The approach of inferring site occupancy probability from

replicated sampling of multiple sites is valid for a wide vari-

ety of species and spatial scales well beyond the scope of this

study (McClintock et al., 2010; Gibson, 2011; Katsanevakis

et al., 2012; Noon et al., 2012).

Besides the modelling and sampling advantages, the adop-

tion of occupancy in the assessment of rarity finds support

in two general relationships that are firmly grounded in the

ecological literature: the relationship between occupancy and

local abundance, and the relationship between local abun-

dance and species detection probability. The positive rela-

tionship between occupancy and local abundance is an

extremely recurrent pattern (Gaston et al., 2000) supported

by a vast empirical literature (Borregaard & Rahbek, 2010).

If locally abundant species also have large ranges, then we

expect occupancy-based and abundance-based metrics to

offer similar views of who is rare and who is common, which

justifies taking the most practical approach of sampling sites

instead of individuals. When sampling sites, detection of the

species requires detection of at least one individual of the

species, and herein lies the connection with the second rela-

tionship – that probability of detecting a species is positively

associated with the local number of individuals (Royle &

Nichols, 2003). If both relationships are true, it follows that

(1) common (high occupancy) species should be relatively

easy to detect wherever they occur and (2) expert predictions

of rarity should not fail too frequently on the basis of detec-

tion failure. While these conclusions do not undermine the

importance of accounting for detection errors, we believe

they reinforce the value of expert knowledge on species rarity

and partially explain the results of this study.

Given the weight that notions of rarity carry in population

biology and wildlife management, it is essential that we

quantify them with an appropriate assessment of uncertainty

(IUCN, 2011). When working with field observations, such

assessments should formally account for the imperfections of

the sampling process, whether the goal is to measure the

extent of a distribution or to examine relations between

environmental factors and the probability of species occur-

rence (K�ery, 2011). When field data are unavailable or insuf-

ficient, however, much can be performed before accepting

inaction on the grounds of insufficient knowledge. While

expert knowledge contains an element of subjective judge-

ment that may increase bias and uncertainty in quantitative

assessments (McCarthy et al., 2004), our results show how

experts can make useful predictions about species rarity and

commonness. This should be motivation for taking expert

knowledge seriously and for eliciting it in ways that maxi-

mize its usefulness. There is a growing literature on how to

systematically elicit expert knowledge (Kuhnert et al., 2010;

Martin et al., 2012), as well as examples of how it can help

guide conservation decisions (Keith et al., 2004; Martin

et al., 2011). Some elicitation tools are specifically designed

for quantifying probabilities of success (e.g. a probability that

a species is present at a site) using the same logit-linear

model structure that we used in this study (Low-Choy et al.,

2009a). Rigorous and creative eliciting methods may thus

provide information that can be a guide to action on its own

right, a basis for empirical testing of expert predictions, or a

source of prior information in Bayesian updating (Low-Choy

et al., 2009b). We hope this study fosters a productive com-

bination of elicitation and empirical tests that will help cover

information gaps and stimulate empirical research.
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